

Year 11 Mathematics Specialist Test 2 2016

Calculator Assumed Vectors Chapters 3,4,8

STUDENT S NAME			
DATE:	TIME: 50 minutes	MARKS:	47
Special Items:	Pens, pencils, ruler, eraser. Three calculators, drawing instruments, notes on one side of a single A4 notes to be handed in with this assessment)	page (these	9
Questions or parts of qu	estions worth more than 2 marks require working to be shown to receive	full marks.	
1. (6 marks) Given $\mathbf{a} = \begin{pmatrix} 2^{2} \\ -1 \end{pmatrix}$	and $\mathbf{b} = \begin{pmatrix} 8 \\ 15 \end{pmatrix}$, determine		
(a) a unit	vector parallel to $\frac{b}{2}$ $\frac{b}{2} = \frac{1}{17} \begin{pmatrix} 8 \\ 15 \end{pmatrix}$		[2]
(b) a vec	tor parallel to $\frac{b}{\sim}$ and four times as long $4 \begin{pmatrix} 8 \\ 15 \end{pmatrix} = \begin{pmatrix} 32 \\ 60 \end{pmatrix}$		[2]
	ze of the acute angle between $\frac{a}{a}$ and $\frac{b}{a}$ $\frac{\partial}{\partial x} = \frac{\begin{pmatrix} 24 \\ -7 \end{pmatrix} \cdot \begin{pmatrix} 8 \\ 15 \end{pmatrix}}{25 \cdot 17} = \frac{87}{25 \cdot 17}$ $\frac{\partial}{\partial x} = \frac{78 \cdot 19}{25 \cdot 19}$		[2]

2. (4 marks)

The unit vector $\overset{\wedge}{\mathbf{u}} = \begin{pmatrix} a \\ -b \end{pmatrix}$ is perpendicular to $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$. If a > 0, determine the values of a and b.

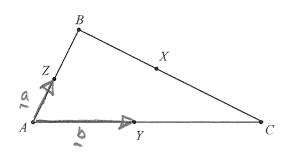
$$\binom{a}{-b}$$
. $\binom{4}{3}$ =0 => $4a-3b=0$

3. (5 marks)

Given that $\mid \mathbf{\underline{a}} \mid = 7$, $\mid \mathbf{\underline{b}} \mid = 4$ and $\mathbf{\underline{a}} \cdot \mathbf{\underline{b}} = 11$, determine

(a)
$$\underset{\sim}{\mathbf{a}} \cdot \underset{\sim}{\mathbf{a}}$$
 [1]

(b)
$$b \cdot b$$
 [1]


(c)
$$(a-b) \cdot (a-b)$$
 [2]
= $|a|^2 - a \cdot b - a \cdot b + |b|^2$
= $49 - 2(11) + 16 = 43$

(d)
$$|\frac{\mathbf{a}}{\sim} - \frac{\mathbf{b}}{\sim}|$$
 exactly [1]

4. (6 marks)

The diagram shows a triangle ABC. Points X, Y and Z are the mid-points of BC, CA and AB respectively.

Vector $\overrightarrow{AZ} = \mathbf{a}$ and vector $\overrightarrow{AY} = \mathbf{b}$

(a) Express in terms of $\underset{\sim}{a}$ and $\underset{\sim}{b}$

(i) the vector
$$\overrightarrow{YZ}$$

[1]

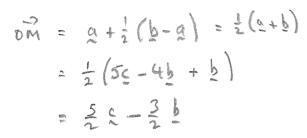
(ii) the vector
$$\overrightarrow{CB}$$

$$\vec{CB} = 2a - 2b = 2(a - b)$$

[1]

(b) Using your answers to part (a), write down $\underline{\text{two}}$ facts about the relationship between the lines YZ and CB. [2]

(c) Express in terms of
$$\underset{\sim}{a}$$
 and $\underset{\sim}{b}$, the vector \overrightarrow{AX} .


[2]

$$A\vec{x} = 2b + (a-6)$$
= $a + b$

6. (5 marks)

The position vectors of the points A,B and C are $\overset{\bullet}{a}$, $\overset{\bullet}{b}$ and $\overset{\bullet}{c}$ respectively. Given that $\overset{\bullet}{a} = 5\overset{\bullet}{c} - 4\overset{\bullet}{b}$ determine, in terms of $\overset{\bullet}{b}$ and $\overset{\bullet}{c}$ only.

(a) the position vector of M, the mid-point of AB.

(b) the position vector of the point P which divides AC in the ratio 1 : 4

7. (3 marks)

Solve for the vector \mathbf{a} if $2\mathbf{a} - \begin{pmatrix} 4 \\ -8 \end{pmatrix} = \begin{pmatrix} 17 \\ -36 \end{pmatrix} - 5\mathbf{a}$

$$7a = \begin{pmatrix} 21 \\ -44 \end{pmatrix}$$

$$a = \begin{pmatrix} 3 \\ -44 \end{pmatrix}$$

[2]

[3]

8. (5 marks)

The diagram below shows a particle in equilibrium under the forces shown. Determine the exact value of $\tan \theta$.

-> Puso = Wus 60°

Prino + Wsii 60° = W

Prino = W - Wsii 60° - @

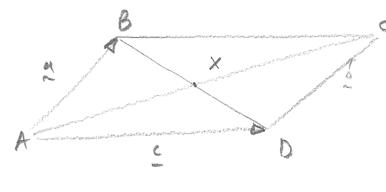
Puso = Wus 60°

+06y0

TR in compret form

For P: (Psio)

For No: (Psio)


For No: (Visito)

For No: (Visito)

9. (6 marks)

To prove: The diagonals of a parallelogram bisect each other.

ABCD is a parallelogram with $\overrightarrow{AB} = \underbrace{a}_{\sim}$ and $\overrightarrow{AD} = \underbrace{c}_{\sim}$. The diagonals AC and BD meet at X. If $\overrightarrow{BX} = \overrightarrow{kBD}$ and $\overrightarrow{AX} = \overrightarrow{tAC}$, use the fact that $\overrightarrow{AX} = \overrightarrow{AB} + \overrightarrow{BX}$ to show that $k = t = \frac{1}{2}$

$$BX = KBD$$

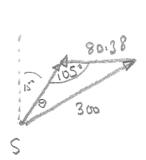
$$AX = FAC$$

Now
$$A\hat{x} = A\hat{g} + B\hat{x}$$

 $E(a+\epsilon) = a + k(\epsilon-a)$

5. (7 marks)

An aircraft, whose speed in still air is 300 kmh⁻¹, flies in a straight line from R to S, a distance of 400 km. The bearing of S from R is 195° . There is a wind blowing from the east. Given that the pilot needs to set a course due south, calculate


the speed of the wind

tan
$$15^{\circ} = \frac{1401}{300} = 1401 = 80.38 \text{ kmh}^{-1}$$

$\mbox{(b)} \qquad \mbox{the time, in minutes, of the flight}$

If the speed and direction of the wind are unchanged

(c) What course does the pilot need to set on the return flight from S to R?

[2] 3

[2]

[3]